Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.

Identifieur interne : 000266 ( Main/Exploration ); précédent : 000265; suivant : 000267

Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.

Auteurs : Marta Stolarczyk [Pays-Bas] ; Guido Veit [Canada] ; Andrea Schnúr [Canada] ; Mieke Veltman [Pays-Bas] ; Gergely L. Lukacs [Canada] ; Bob J. Scholte [Pays-Bas]

Source :

RBID : pubmed:29351448

Descripteurs français

English descriptors

Abstract

The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o- cells lacking functional CFTR (iCFTR-) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR+). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR+ cells, iCFTR- cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR- cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.

DOI: 10.1152/ajplung.00458.2017
PubMed: 29351448


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.</title>
<author>
<name sortKey="Stolarczyk, Marta" sort="Stolarczyk, Marta" uniqKey="Stolarczyk M" first="Marta" last="Stolarczyk">Marta Stolarczyk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veit, Guido" sort="Veit, Guido" uniqKey="Veit G" first="Guido" last="Veit">Guido Veit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schnur, Andrea" sort="Schnur, Andrea" uniqKey="Schnur A" first="Andrea" last="Schnúr">Andrea Schnúr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veltman, Mieke" sort="Veltman, Mieke" uniqKey="Veltman M" first="Mieke" last="Veltman">Mieke Veltman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lukacs, Gergely L" sort="Lukacs, Gergely L" uniqKey="Lukacs G" first="Gergely L" last="Lukacs">Gergely L. Lukacs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scholte, Bob J" sort="Scholte, Bob J" uniqKey="Scholte B" first="Bob J" last="Scholte">Bob J. Scholte</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Pediatric Pulmonology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Pediatric Pulmonology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29351448</idno>
<idno type="pmid">29351448</idno>
<idno type="doi">10.1152/ajplung.00458.2017</idno>
<idno type="wicri:Area/Main/Corpus">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000271</idno>
<idno type="wicri:Area/Main/Curation">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000271</idno>
<idno type="wicri:Area/Main/Exploration">000271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.</title>
<author>
<name sortKey="Stolarczyk, Marta" sort="Stolarczyk, Marta" uniqKey="Stolarczyk M" first="Marta" last="Stolarczyk">Marta Stolarczyk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veit, Guido" sort="Veit, Guido" uniqKey="Veit G" first="Guido" last="Veit">Guido Veit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schnur, Andrea" sort="Schnur, Andrea" uniqKey="Schnur A" first="Andrea" last="Schnúr">Andrea Schnúr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veltman, Mieke" sort="Veltman, Mieke" uniqKey="Veltman M" first="Mieke" last="Veltman">Mieke Veltman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lukacs, Gergely L" sort="Lukacs, Gergely L" uniqKey="Lukacs G" first="Gergely L" last="Lukacs">Gergely L. Lukacs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University , Montreal, Quebec </wicri:regionArea>
<wicri:noRegion>Quebec </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scholte, Bob J" sort="Scholte, Bob J" uniqKey="Scholte B" first="Bob J" last="Scholte">Bob J. Scholte</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Cell Biology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Pediatric Pulmonology, Erasmus MC, Rotterdam , The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Pediatric Pulmonology, Erasmus MC, Rotterdam </wicri:regionArea>
<wicri:noRegion>Rotterdam </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ADAM17 Protein (genetics)</term>
<term>ADAM17 Protein (metabolism)</term>
<term>Amphiregulin (genetics)</term>
<term>Amphiregulin (metabolism)</term>
<term>Bronchi (metabolism)</term>
<term>Bronchi (pathology)</term>
<term>Cell Differentiation (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cystic Fibrosis (physiopathology)</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator (genetics)</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator (metabolism)</term>
<term>Cytokines (metabolism)</term>
<term>Epithelium (metabolism)</term>
<term>Epithelium (pathology)</term>
<term>ErbB Receptors (genetics)</term>
<term>ErbB Receptors (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amphiréguline (génétique)</term>
<term>Amphiréguline (métabolisme)</term>
<term>Bronches (anatomopathologie)</term>
<term>Bronches (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cytokines (métabolisme)</term>
<term>Différenciation cellulaire (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mucoviscidose (physiopathologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéine ADAM17 (génétique)</term>
<term>Protéine ADAM17 (métabolisme)</term>
<term>Protéine CFTR (génétique)</term>
<term>Protéine CFTR (métabolisme)</term>
<term>Récepteurs ErbB (génétique)</term>
<term>Récepteurs ErbB (métabolisme)</term>
<term>Épithélium (anatomopathologie)</term>
<term>Épithélium (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>ADAM17 Protein</term>
<term>Amphiregulin</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator</term>
<term>ErbB Receptors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ADAM17 Protein</term>
<term>Amphiregulin</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator</term>
<term>Cytokines</term>
<term>ErbB Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Bronches</term>
<term>Épithélium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amphiréguline</term>
<term>Protéine ADAM17</term>
<term>Protéine CFTR</term>
<term>Récepteurs ErbB</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bronchi</term>
<term>Epithelium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amphiréguline</term>
<term>Bronches</term>
<term>Cytokines</term>
<term>Protéine ADAM17</term>
<term>Protéine CFTR</term>
<term>Récepteurs ErbB</term>
<term>Épithélium</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Bronchi</term>
<term>Epithelium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Mucoviscidose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Cystic Fibrosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Differentiation</term>
<term>Cells, Cultured</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Différenciation cellulaire</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o
<sup>-</sup>
cells lacking functional CFTR (iCFTR
<sup>-</sup>
) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR
<sup>+</sup>
). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR
<sup>+</sup>
cells, iCFTR
<sup>-</sup>
cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR
<sup>-</sup>
cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29351448</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>314</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am J Physiol Lung Cell Mol Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.</ArticleTitle>
<Pagination>
<MedlinePgn>L555-L568</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00458.2017</ELocationID>
<Abstract>
<AbstractText>The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o
<sup>-</sup>
cells lacking functional CFTR (iCFTR
<sup>-</sup>
) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR
<sup>+</sup>
). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR
<sup>+</sup>
cells, iCFTR
<sup>-</sup>
cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR
<sup>-</sup>
cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stolarczyk</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veit</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schnúr</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veltman</LastName>
<ForeName>Mieke</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lukacs</LastName>
<ForeName>Gergely L</ForeName>
<Initials>GL</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, McGill University , Montreal, Quebec , Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scholte</LastName>
<ForeName>Bob J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology, Erasmus MC, Rotterdam , The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Pediatric Pulmonology, Erasmus MC, Rotterdam , The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C587848">AREG protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D066258">Amphiregulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C505032">CFTR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>126880-72-6</RegistryNumber>
<NameOfSubstance UI="D019005">Cystic Fibrosis Transmembrane Conductance Regulator</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C512478">EGFR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D066246">ErbB Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="D000072198">ADAM17 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="C000606462">ADAM17 protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072198" MajorTopicYN="N">ADAM17 Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066258" MajorTopicYN="N">Amphiregulin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001980" MajorTopicYN="N">Bronchi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003550" MajorTopicYN="N">Cystic Fibrosis</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019005" MajorTopicYN="N">Cystic Fibrosis Transmembrane Conductance Regulator</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004848" MajorTopicYN="N">Epithelium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066246" MajorTopicYN="N">ErbB Receptors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">EGF receptor</Keyword>
<Keyword MajorTopicYN="Y">TNF-α-converting enzyme</Keyword>
<Keyword MajorTopicYN="Y">a disintegrin and metalloproteinase 17</Keyword>
<Keyword MajorTopicYN="Y">amphiregulin</Keyword>
<Keyword MajorTopicYN="Y">cystic fibrosis transmembrane conductance regulator</Keyword>
<Keyword MajorTopicYN="Y">glutathione</Keyword>
<Keyword MajorTopicYN="Y">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29351448</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00458.2017</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Pays-Bas</li>
</country>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Stolarczyk, Marta" sort="Stolarczyk, Marta" uniqKey="Stolarczyk M" first="Marta" last="Stolarczyk">Marta Stolarczyk</name>
</noRegion>
<name sortKey="Scholte, Bob J" sort="Scholte, Bob J" uniqKey="Scholte B" first="Bob J" last="Scholte">Bob J. Scholte</name>
<name sortKey="Scholte, Bob J" sort="Scholte, Bob J" uniqKey="Scholte B" first="Bob J" last="Scholte">Bob J. Scholte</name>
<name sortKey="Veltman, Mieke" sort="Veltman, Mieke" uniqKey="Veltman M" first="Mieke" last="Veltman">Mieke Veltman</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Veit, Guido" sort="Veit, Guido" uniqKey="Veit G" first="Guido" last="Veit">Guido Veit</name>
</noRegion>
<name sortKey="Lukacs, Gergely L" sort="Lukacs, Gergely L" uniqKey="Lukacs G" first="Gergely L" last="Lukacs">Gergely L. Lukacs</name>
<name sortKey="Schnur, Andrea" sort="Schnur, Andrea" uniqKey="Schnur A" first="Andrea" last="Schnúr">Andrea Schnúr</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000266 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000266 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29351448
   |texte=   Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29351448" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020